Welche Verpackungsgröße benötigt man für 25 kg Zement?

Für eine handelsübliche Verpackungsgröße von 25 kg Zement sollte mit Kosten von 3 bis 6 Euro gerechnet werden. Für das obige Beispiel werden 500 kg Zement benötigt. Die Kosten hierfür berechnen sich wie folgt: 500 kg Gesamtmenge / 25 kg Sack = 20 Säcke Zement 3 Euro pro Sack x 20 Säcke = 60 Euro

Was ergibt sich aus dem Bedarf an Zement?

Daraus ergibt sich wiederum ein Bedarf an Zement von: 2.500 kg Beton / 5 = 500 kg Zement (20 Säcke á 25 kg) Für den Zuschlag wird die Gesamtmenge an Beton mit 4/5 beziehungsweise 0,8 multipliziert oder die Differenz zwischen Gesamtmenge und Beton benutzt.

Was sind die Kosten für eine Verpackung von 500 kg Zement?

LESEN:   Wie stelle ich einen Postnachsendeantrag?

Für das aufgeführte Beispiel mit einer Menge von 2.500 Kilogramm Beton werden also 500 kg Zement, 2.000 kg Zuschlag und 200 Liter Wasser benötigt. Für eine handelsübliche Verpackungsgröße von 25 kg Zement sollte mit Kosten von 3 bis 6 Euro gerechnet werden. Für das obige Beispiel werden 500 kg Zement benötigt.

Was ist der Bedarf an Beton pro Kubikmeter?

Aufgrund der durchschnittlichen Masse von 2.450 kg Beton pro Kubikmeter werden demnach 2.400 bis 2.500 kg Beton benötigt. Daraus ergibt sich wiederum ein Bedarf an Zement von: 2.500 kg Beton / 5 = 500 kg Zement (20 Säcke á 25 kg)

Wie hoch sind die Kosten für den Sack und die Säcke?

Die Kosten hierfür berechnen sich wie folgt: 500 kg Gesamtmenge / 25 kg Sack = 20 Säcke Zement 3 Euro pro Sack x 20 Säcke = 60 Euro 6 Euro pro Sack x 20 Säcke = 120 Euro Die Kosten können im Durchschnitt also zwischen 60 und 120 Euro liegen. Hinzu kommen noch die Kosten für den jeweiligen Zuschlag.

LESEN:   Warum ist die Bezahlung des Spitzensports in Ordnung?

Was ist die Dichte von Zement und Zuschlag?

Beton hat eine Dichte von 2,4-2,5 kg/dm³. Das sind 2300-2400 kg pro Kubikmeter Das Mischungsverhältnis zwischen Zement und Zuschlag ist 1:4. Für 1 m³ Beton benötigt man: (2300 / 5) x 1= 460 kg Zement = 18,4 Sack zu 25 kg = 52 Euro (2300 / 5) x 4= 1840 kg Zuschlag = ca. 25 Euro